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In addition to the energy dissipation of excess light occurring in PSII antenna via the xanthophyll cycle, there is mounting evi-
dence of a zeaxanthin-independent pathway for non-photochemical quenching based within the PSII reaction centre (reac-
tion centre quenching) that may also play a significant role in photoprotection. It has been demonstrated that acclimation of
higher plants, green algae and cyanobacteria to low temperature or high light conditions which potentially induce an imbal-
ance between energy supply and energy utilization is accompanied by the development of higher reduction state of QA and
higher resistance to photoinhibition (Huner et al., 1998). Although this is a fundamental feature of all photoautotrophs, and
the acquisition of increased tolerance to photoinhibition has been ascribed to growth and development under high PSII exci-
tation pressure, the precise mechanism controlling the redox state of QA and its physiological significance in developing
higher resistance to photoinhibition has not been fully elucidated. In this review we summarize recent data indicating that
the increased resistance to high light in a broad spectrum of photosynthetic organisms acclimated to high excitation pressure
conditions is associated with an increase probability for alternative non-radiative P680+QA

− radical pair recombination path-
way for energy dissipation within the reaction centre of PSII. The various molecular mechanisms that could account for non-
photochemical quenching through PSII reaction centre are also discussed.
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Changes in irradiance, temperature, nutrients and water
availability result in imbalances between the light energy
absorbed through photochemistry and energy utilization
through photosynthetic electron transport coupled to car-
bon, nitrogen and sulphur reduction. This leads to photoin-
hibition of photosynthesis that may result in photodamage
to the D1 reaction centre polypeptide of PSII (Aro et al.,
1993; Krause, 1988; Long et al., 1994; Powles, 1984).
Recovery from photoinhibition in plants, green algae and
cyanobacteria is thought to involve a PSII repair cycle in
which photodamaged D1 is degraded and the re-synthe-
sised D1 is reinserted to form a functional PSII reaction cen-
tre (Aro et al., 1993; Melis, 1999). It has been shown in
some chilling-sensitive plant species, green algae and cyano-
bacteria that protection against photoinhibition may be
accounted for, in part, by an increased rate of repair relative
to the rate of photodamage to D1 (Melis, 1999; Nishida
and Murata, 1996). Alternatively, certain cold tolerant plant
species such as winter wheat (Triticum aestivum L.), rye
(Secale cereale L.), barley (Hordeum vulgare L.), Arabidopsis
thaliana, exhibit a minimal dependence on D1 repair in
response to cold but instead increase photosynthetic capac-
ity and reprogramme carbon metabolism to increase RuBP
regeneration and to recover flux through the Calvin cycle,
increasing the capacity for photochemical quenching (Adams
et al., 2001; Huner et al., 1993; Hurry et al., 1995; Kim et
al., 2005; Stitt and Hurry, 2002; Strand et al., 2003; Strand
et al., 1997; Xu et al., 1999). This reprogramming of metab-
olism results in an increased capacity to keep QA oxidized

and PSII reaction centres open under high excitation pres-
sure induced by either excessive irradiance or low tempera-
tures (Huner et al., 1998; Öquist and Huner, 2003). Thus,
photoprotection in these species is accomplished, in part,
through an increase in photochemical quenching (qP)
(Krause and Jahns, 2003).

In contrast to the D1 repair cycle and photochemical
quenching, the concept of radiationless dissipation of excess
energy through antenna quenching was originally developed
on the basis of the Butler model for energy transfer and
used to account for Chl fluorescence quenching (Butler,
1978). Non-photochemical quenching (NPQ) of excess
excitation energy in the antenna pigment bed of PSII is con-
sidered to be the major PSII photoprotective mechanism
(Demmig-Adams and Adams, 1992; Gilmore, 1997; Gilmore
and Ball, 2000; Horton et al., 1996; Ort, 2001).
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There is a historic precedence for the role of reaction cen-
tre quenching in the non-photochemical dissipation of
excess energy (Weis and Berry, 1987; Krause and Weis,
1991; Walters and Horton, 1993). We summarize the major
mechanisms capable of dissipating excess excitation energy
within the thylakoid membranes and focus on the reaction
centre quenching of excess light and its role in acclimation
to changing environmental conditions and photoprotection
of the photosynthetic apparatus. We also summarize recent
experimental evidence that supports a significant role for
reaction centre quenching in the photoprotection of PSII in
cyanobacteria, green algae, conifers, and herbaceous plants.
Various molecular mechanisms that could account for the
increased probability for energy dissipation within the reac-
tion centre of PSII are also discussed. We conclude that, as
originally suggested by Krause and Weis (1991), it is proba-
ble that both reaction centre and antenna quenching func-
tion in vivo to different extents, depending on the
environmental conditions, to protect PSII from photodam-
age.

PHOTOPROTECTIVE MECHANISMS OF PSII

Zeaxanthin-dependent Nonphotochemical Quenching
of Excess Light Energy

There is broad agreement that the radiationless dissipation
of excess excitation energy in the chlorophyll pigment bed
of LHCII, associated with the formation of the xanthophyll
pigment zeaxanthin (Z), is one of the major protective
mechanisms against photoinhibitory damage of PSII (for a
reviews see: Demmig et al., 1987; Demmig-Adams, 1990;
Demmig-Adams and Adams, 1992; Horton et al., 1996;
Niyogi, 1999; Ort, 2001). The role of the pH- and zeaxan-
thin-dependent shifts in the oligomerisation state of LHCII
(Horton et al., 1996) as well as the activation state of zeax-
anthin (Ruban et al., 2002; Aspinall-O’Dea et al., 2002) in
developing the rapidly relaxing energy dependent compo-
nent (qE) of NPQ has been well characterized, and this
mechanism is considered to reflect the indirect, allosteric
mechanism for antenna quenching.

More recently, a possible involvement in NPQ has been
suggested for the psbS gene product (Funk et al., 1995a),
which belongs to the LHC protein superfamily (Wedel et al.,
1992). Indeed, a psbS deletion mutant (Li et al., 2000) and
various psbS-defective mutants (Peterson and Havir, 2001;
Peterson and Havir, 2003; Grasses et al., 2002) are impaired
in the development of the major component of NPQ. Based
on the original observation that PsbS binds chlorophylls and
xanthophylls (Funk et al., 1995b), and its role in the devel-
opment of qE, Li et al. (2000) suggested that this protein is
the site of ΔpH and xanthophyll-dependent NPQ. More
detailed biochemical analysis suggested that the PsbS pro-
tein does not bind pigments (Dominici et al., 2002) and
most of the highly conserved amino acids that form the
ligands for chlorophyll in most of the LHC proteins (Kühl-
brandt et al., 1994; Bassi et al., 1999) are not found in PsbS.
However, isolated PsbS protein was shown to bind exoge-
nous zeaxnathin (Aspinall-O’Dea et al., 2002), making the

precise function and specific mode of action of the PsbS
protein still controversial.

Inactive PSII Reaction Centres as Quenchers of Excess
Energy

In addition to ΔpH and zeaxanthin-dependent nonphoto-
chemical quenching, it has been demonstrated that fluores-
cence quenching might result from a conversion of PSIIα-
centres (dimers) to PSIIβ–centres (monomers) in a low fluo-
rescence state (Delrieu, 1998). The monomerization of PSII
centres would effectively decrease the absorption cross-sec-
tion of PSII (Delrieu, 1998) and can be triggered by high
light (Kruse et al., 1997). The relative proportion of active
PSII centres versus inactive centres is dependent both on the
intrathylakoid ΔpH as well as the proportion of closed reac-
tion centres measured as the relative reduction state of QA

(Weis and Berry, 1987; Krause and Weis, 1991; Krause and
Jahns, 2003). Furthermore, photoinactivated PSII com-
plexes may also effectively dissipate excess excitation energy
as heat (Krause, 1988) and the role of photoinactivated cen-
tres as quenchers increases with the severity of photoinacti-
vation (Lee et al., 2001). It has been proposed that the
conversion of photochemically active, fluorescent, closed
PSII reaction centres into photochemically inactive, nonfluo-
rescent PSII reaction centres may serve as an effective
mechanism for energy dissipation (Krause, 1988; Krause
and Weis, 1991) and prevent further damage not only to
the photoinactivated reaction centres themselves but also to
neighbouring active PSII reaction centres (Lee et al., 2001;
Matsubara and Chow, 2004).

PSII Cyclic Electron Transport 

Reduction of P680+ by Cytb559 via the cyclic electron
pathway: Cytb559 → dChlz → β-Car → P+680, represented
by dotted lines in Figure 2, has been also suggested as an
alternative energy dissipating mechanism operating within
the PSII reaction centre (Barber and De Las Rivas, 1993;
Falkowski et al., 1986; Telfer et al., 1991; Allakhverdiev et
al., 1997). The conversion of Cytb559 from its high potential
form (HP) to the low-potential form (LP) (Prasil et al., 1996),
may play a key role as a molecular switch allowing it to act
as an electron donor to P680+ (HP form) or an electron
acceptor (LP form) (Barber and De Las Rivas, 1993). The
role of the high potential form of Cytb559 in photoprotection
of PSII has been also discussed (Stewart et al., 1998;
Thompson and Brudvig, 1988). It has been suggested that
Cytb559 may act as a secondary donor to P680+ via the
dChlz chlorophyll molecule (Barber and De Las Rivas, 1993;
Nield et al., 2000; Thompson and Brudvig, 1988). In sup-
port of this, the reversible oxidation of dChlZ was shown to
play a significant role in fluorescence quenching in PSII
(Schweitzer and Brudvig, 1997). Additionally, β-carotene
can be photooxidized and it was suggested to facilitate the
electron flow from Cytb559 and dChlZ to P680+ (Telfer et al.,
1991, 1994). Although the involvement of β-carotene and
dChlZ in cyclic electron flow from Cytb559 to P680+ has been
ambiguous, the recently published structure of the oxygen
evolving complex placed one of the β-carotene molecules
of the PSII reaction centre in direct contact with ChlZD2 and
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between Cytb559 and P680 chlorophylls (Ferreira et al.,
2004), supporting a role for β-carotene in PSII cyclic elec-
tron flow.

More recently, cyclic electron transport around PSII in
intact chloroplasts was demonstrated to be almost equal to
the water-water cycle driven electron flow, implying that it
can effectively dissipate excess light energy and contribute
to photoprotection of PSII under conditions that limit photo-
synthesis (Miyake and Yokota 2001; Miyake et al. 2002).
The accumulation of Chlz

+, as a result of over-oxidation of
P680, has also been suggested as a site for photoprotection
(Schweitzer and Brudvig, 1997; Stewart et al., 1998).

State I – State II Transitions

State transitions have been also well known as an adap-
tive mechanism for short-term redistribution of excitation
energy between the two photosystems, which may play sub-
stantial role in protecting PSII from overexcitation in all pho-
tosynthetic organisms (Anderson, 1986; Allen, 1995; Lunde
et al., 2000; Haldrup et al., 2001). It is well established that
state transitions involve reversible phosphorylation/dephos-
phorylation of the major LHCII by a thylakoid-bound kinase,
which is activated by the redox state of the PQ pool and
regulated by the imbalance of PSII excitation and the capac-
ity of the acceptor side of PSI to utilize the electron flow.
The phosphorylation of LHCII induces lateral migration of P-
LHCII from PSII towards PSI increasing the antenna cross-
section of PSI at the expense of PSII (Anderson, 1986; Allen,
1995; Haldrup et al., 2001) resulting in a redistribution of
the energy in favour of PSI. Cyt b6/f has been identified as
the redox sensor of the PQ pool and has been involved in
controlling the phosphorylation of LHCII (Anderson, 1992).
Recently, the small PsaH subunit of the PSI complex has
been demonstrated to play a crucial role for state transition
in Arabidopsis thaliana (Lunde et al., 2000).

Photorespiration, the Water-water Cycle and Chlorores-
piration

Photorespiration can also effectively dissipate excess light
energy and can serve as an alternative sink for photosyn-
thetic electrons by consumption of NADPH and ATP via the
photorespiratory pathway (Osmond, 1981; Kozaki and
Takeba, 1996). It has been demonstrated that the photores-
piratory pathway may play significant role in protecting
plants from photoinhibition (Osmond, 1981; Kozaki and
Takeba, 1996). In addition, the role of the water-water cycle
as an alternative photon and electron sink, in suppressing
photoinhibition by decreasing the production of reactive
oxygen species is also well established (Asada, 1999).

Chlororespiration, a light independent process that can
maintain a trans-thylakoid proton gradient, has been also
suggested as an effective alternative electron sink in alleviat-
ing over-reduction of the PQ pool and protecting PSII reac-
tion center from photo-damage under excessive light
conditions (Field et al., 1998). It has been demonstarted that
the contribution of the chlororespiratory electron flux
involving the NDH-complex and PTOX to total electron
flow in the chloroplast and its photoprotective role as an
alternative electron sink is rather limited under optimal

growth conditions (Ort and Baker, 2002; Rosso et al., 2006).
However, chlororespiration has been shown to play an
important photoprotective role in the high alpine plant spe-
cies Ranunculus glacialis acclimated to low temperature
(Streb et al., 2005). Furthermore, up-regulation of PTOX and
the chloroplast NDH-complex have been reported in oat
plants subjected to heat and high light stresses (Quiles,
2006).

REACTION CENTRE QUENCHING

Although a major focus of recent research on photopro-
tection has been on the contribution of antenna quenching
to NPQ (for a reviews see: (Horton et al., 1996; Niyogi,
1999), there is historical precedence for alternative mecha-
nisms for the dissipation of excess light and of photoprotec-
tion of PSII reaction centres (Krause, 1988; Krause and
Weis, 1991; Walters and Horton, 1993). Considerable
experimental evidence for non-radiative energy dissipation
within the reaction centre of PSII has been published (Brian-
tais et al., 1979; Weis and Berry, 1987; Krause, 1988;
Bukhov et al., 2001; Sane et al., 2002; Vavilin and Vermaas,
2000; Ivanov et al., 2003, 2005, 2006; Finazzi et al., 2004;
Matsubara and Chow, 2004; Zulfugarov et al., 2007).

At physiological temperatures, in vivo chlorophyll fluores-

Figure 1. A schematic kinetic model of energy migration in PS II
modified from the original reversible radical pair model (Schatz et al.,
1988) including additional kinetic compartment of loosely connected
PSII antenna (Moise and Moya, 2004). The rapid excitation equilib-
rium between the antenna of PSII and the primary donor P (P680)
represented by the trapping and detrapping rate constants kt and k-t

are not explicitly considered since the model assumes trap-limited
exciton decay. The apparent rate constant for the primary charge sep-
aration which results in the primary singlet radical pair [P+Pheo−]1 is
represented by k1. The primary singlet radical pair may recombine
back to the excited state of the primary donor (k-1) or by three sepa-
rate reactions to recombine (nonradiative decay) back to the ground
state (k2D), to the triplet (spin dephasing) excited state (k2T), and under
Fo conditions by photochemical conversion (charge stabilization) to
transfer an electron to QA (k2Q) (Schreiber and Krieger, 1996). k3 and
k-3 describe the excitation energy exchange between the main PSII
antenna-RC complex and the loosely connected PSII antenna. kD, kF

and k’D, k’F represent the apparent rate constants for nonradiative
(thermal deexitation) and radiative (fluorescence) deactivation pro-
cesses in the main PSII antenna-RC complex and the loosely con-
nected PSII antenna, respectively.
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cence originates from the light harvesting antenna of PSII
and its magnitude reflects the competing processes of pho-
tochemistry and non-photochemical dissipation of the
absorbed light energy (Butler, 1978; Krause and Weiss,
1991). As postulated in the bipartite model (Butler, 1978)
there are three pathways for available dissipation of an exci-
ton within the PSII antenna (Figure 1): 1) thermal de-excita-
tion (kD); 2) it can be re-emitted as fluorescence (kF) and 3)
it can be transferred to the reaction centre of PSII (kt). It is
considered that if an exciton is transferred to an open reac-
tion centre (primary quinone acceptor QA is oxidized) it can
be used for photochemistry by transferring an electron from
water to QA (k1). Based on fluorescence lifetime measure-
ments a reversible radical pair model, featuring rapid excita-
tion equilibrium between the PSII antenna and the reaction
centre P680 (P) was proposed by Schatz et al. (1988). In this
model, excitation trapping is described by the apparent rate
constant k1 for the primary charge separation, resulting in
the primary radical pair [P+Pheo−]1 in a singlet state. This
process is considered to be reversible and the rate constant
k-1 describes the recombination of [P+Pheo−] back to the
excited state of the donor P* (Fig. 1). When the reaction
centre is open under Fo conditions, three further deactiva-

tion pathways could be considered: 1) photochemical
energy conversion by charge stabilization reactions (k2Q); 2)
spin dephasing processes resulting in a triplet radical pair
state (k2T); and 3) recombination of the singlet radical pair
by nonradiative decay to ground state (k2D) (Schatz et al.,
1988; Wagner et al., 1996; Schreiber and Krieger, 1996).
Although the original model proposed by Schatz et al.
(1988) does not assume the formation of a triplet state of
the primary radical pair, later nanosecond flash absorption
spectroscopy analysis of charge recombination reactions in
PSII has demonstrated that the yield of the triplet state
3P680 was high in preparations with both open or closed
reaction centres (Van Mieghem et al., 1995; Hillmann et al.,
1995). However, if the reaction centre is closed (when QA is
reduced under Fm conditions) the reversible radical pair
model predicts that only radiative and non-radiative recom-
binations to the ground state are possible. Assuming all of
the above, it is clear that the fluorescence yield (kF) reflects
the excitation density in PSII antenna-reaction centre com-
plex, determined by light absorption, primary radical pair
recombination (k-1) and competing nonradiative decay (kD).
The increase in fluorescence yield when the primary stable
electron acceptor is reduced is defined as variable fluores-

Figure 2. Simplified model of possible pathways associated with non-photochemical chlorophyll fluorescence quenching localised within the
reaction centre of PSII. The primary electron donor P680 accepts light excitation energy and the charge separation via the first singlet exited
state results in the radical pair P680+Pheo− followed by the electron transfer from Pheo− to QA. If the water splitting complex is inhibited the
probability for charge recombination will arise due to reversible back electron transfer from QA

− to Pheo resulting in a singlet 1(P680+Pheo−), or
by spin dephasing to triplet 3(P680+Pheo−) radical pair. Both radical pairs are unstable and will recombine via singlet recombination
[1(P680+Pheo−)] to the ground state P680 or the first singlet excited state 1P680* and via triplet recombination [3(P680+Pheo−)] resulting in the
triplet excited state 3P680*, which may be quenched by β-carotene via singlet oxygen. When forward electron transfer from QA

− to QB is
favoured (k1 >> k2) radiative energy dissipation pathway probably involves the back-reaction via the P680+Pheo− radical pair (A). Shifting the
redox potential of QB toward QA favours the k2 rate constant and would result in increased steady state proportion of reduced QA (B). Shifting
the redox potential of QA to more positive values will decrease the k

−2Q rate constant and increase the free energy gap between P680+ and QA
−

. This will decrease the probability for a charge recombination pathway involving P680+Pheo- and will also cause stabilization of S2QA
− pair (C).

It is proposed that this will increase the probability for direct recombination of QA
− with P680+ via non-radiative dissipation, thus avoiding

triplet recombination and production of singlet oxygen. Shifting the redox potentials of QA and QB in opposite directions (D) would cause fur-
ther stabilization of S2QA

− and further increase the probability for non-radiative energy dissipation. The cyclic electron pathway: Cytb559 → dChlz
→ β-Car → P+

680 is represented by dotted lines. The key role of Cytb559 as one electron protectant against donor or acceptor side photoinhibi-
tion is emphasized by the presence of its high potential (HP) and low potential (LP) forms, which may allow it to act as an electron acceptor (for
acceptor side protection) or as an electron donor (for donor side protection) (Barber and De Las Rivas, 1993).
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cence (FV) and it is assumed to reflect a decrease in k1 and
an increase in k-1. Schreiber and Krieger (1996) proposed
that an increase in the rate of nonradiative energy dissipa-
tion processes (k2D and k2T) in the presence of reduced QA

(QA-) would also result in a decrease in [P+Pheo-] recombi-
nation (k-1), thus modulating the magnitude of Fv. In support
of this hypothesis, a picosecond time-resolved study showed
that zeaxanthin-independent ΔpH non-photochemical quench-
ing (Wagner et al., 1996) and the slow reversible qI type
nonphotochemical quenching in photoinhibited leaves
(Richter et al., 1999) does involve nonradiative decay of the
primary charge separated state to its ground state and/or
triplet excited state (k2D and k2T) localized within the reac-
tion centre of PSII.

A simplified model of possible pathways associated with
non-photochemical chlorophyll fluorescence quenching loc-
alised within the reaction centre of PSII is presented in Fig-
ure 2. The primary electron donor P680 accepts excitation
energy and charge separation via the first singlet exited state
results in formation of the radical pair P680+Pheo−, fol-
lowed by electron transfer from Pheo− to QA. If the water
splitting complex is inhibited by Ca2+ depletion under
increased ΔpH, changing the redox properties of both the
donor and acceptor sides of PSII (Johnson et al., 1995;
Krieger et al., 1993, 1995; Krieger and Weis, 1993), condi-
tions will be right for alternative pathways for P680+ reduc-
tion and the probability for charge recombination will
increase. The release of Ca2+ cations from the donor side
has been shown to shift the redox state of QA towards
higher values (Johnson et al., 1995; Krieger et al., 1993,
1995; Krieger and Weis, 1993), inhibiting electron transfer
from QA to QB and promoting recombination of the radical
pair P680+Pheo-. Bruce et al. have also proposed that, in
addition to this reaction centre quenching based on charge
recombination between P680+ and QA-, nonphotochemi-
cal energy dissipation may occur via direct quenching by
P680+ (Bruce et al., 1997). P680+ can be also reduced by
reverse electron transfer from QA- to Pheo via singlet
1(P680+Pheo-), or by spin dephasing of pair electrons, by
triplet 3(P680+Pheo-) radical pair resulting in the formation
of singlet 1P680* or a triplet 3P680*, respectively (Schreiber
and Neubauer, 1990). Both radical pairs are unstable, and
the singlet radical pair 1(P680+Pheo−) will recombine via sin-
glet recombination to ground state P680 or the first singlet
excited state 1P680* (Liu et al., 1993; Takahashi et al.,
1987). The triplet recombination of 3(P680+Pheo−) results in
the triplet excited state 3P680* (Takahashi et al., 1987),
which is quenched by β-carotene directly or indirectly via
singlet oxygen (Takahashi et al., 1987; Telfer et al., 1994).

Under conditions, when forward electron transfer from
QA- to QB is restricted (k1 << k2), the radiative energy dissi-
pation pathway probably involves the back-reaction via the
P680+Pheo− radical pair (Fig. 2). The possible back reaction
of reduced QA with P680+ has been suggested previously
(Krieger-Liszkay and Rutherford, 1998; Prasil et al., 1996)
and this may be enhanced when QA remains reduced (Vavi-
lin and Vermaas, 2000). Shifting the redox potential of QB

toward QA favours the k2 rate constant and would result in
an increase in the steady state proportion of reduced QA. In
addition, an increased free energy gap between P680+ and

QA
− would decrease the probability for a charge recombina-

tion pathway involving P680+Pheo− and will also cause sta-
bilization of S2QA

− pair. The accumulation of QA
− has been

shown to inhibit the formation of radical pair P680+Pheo−,
preventing P680 triplet formation (Schatz et al., 1988; Vass
et al., 1992). Furthermore, it has been suggested that there
is a non-radiative pathway of charge recombination between
QA

− and the donor side of PSII (Briantais et al., 1979; Vavilin
and Vermaas, 2000; Weis and Berry, 1987). Such a pathway
would increase the probability for non-radiative dissipation
of excitation energy within the reaction centre of PSII
(Bukhov et al., 2001; Weis and Berry, 1987), avoiding triplet
recombination and production of singlet oxygen.

PHOTOPROTECTION THROUGH REACTION
 CENTRE QUENCHING

Over-reduction of QA has been suggested to be a major
prerequisite for efficient dissipation of the excess light within
the reaction centre of PSII (Bukhov et al., 2001; Krause,
1988; Öquist and Huner, 2003). Based on a theoretical
assessment of alternative mechanisms for NPQ in Hordeum
vulgare, Walters and Horton (1993) concluded that reaction
centre quenching is operative only when reaction centres
are closed, that is, when QA is in the reduced state. Non-
radiative charge recombination between QA

− and the donor
side of PSII has been suggested as a mechanism for dissipat-
ing excitation energy via PSII reaction centre quenching
(Briantais et al., 1979; Krieger et al., 1992; Vavilin and Ver-
maas, 2000; Weis and Berry, 1987). There is now a mount-
ing body of experimental evidence for zeaxanthin-independent
dissipation of excess light energy within the reaction centre
of PSII, involving several possible pathways for nonradiative
QA

− decay. In an early study, Jursinic and Govindjee (1982)
estimated that more than 90% of recombinations between
QA

− and the oxidized primary donor P+ occurred via a non-
radiative pathway in thylakoids with an impaired oxygen-
evolving system. Similarly, charge recombination between
QA

− and the oxidized primary donor P+ was reported to
occur predominantly via a nonradiative pathway in bacterial
reaction centres (Woodbury et al., 1986). Donor side
induced shifts in the redox properties of QA have also been
reported during photoactivation of the Mn cluster in PSII
(Johnson et al., 1995) and Ca depletion of the oxygen evolv-
ing complex (Krieger and Rutherford, 1997; Krieger et al.,
1995). From these studies, it was proposed that the increase
in Em of QA/QA

− could result in photoprotection of the reac-
tion centre against excess light by inducing a nonradiative
charge recombination pathway that did not involve the for-
mation of the P680+Pheo− radical pair, and decreased the
yield of P680 triplet and singlet oxygen (Krieger and Ruther-
ford, 1997; Krieger-Liszkay and Rutherford, 1998).

Although, the concept for nonradiative dissipation of exci-
tation energy within the reaction centre of PSII (reaction
centre quenching) was developed mostly from in vitro
experiments, in vivo Stern-Volmer analyses of NPQ in a
marine diatom Phaeodactylum tricornitum also suggested
that changes in NPQ resulted from thermal dissipation in
both the PSII antenna and the reaction centre of PSII
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(Olaizola et al., 1994). It was demonstrated that the contri-
bution of reaction centre quenching to NPQ may affect the
relationship between antenna quenching and changes in
photochemical efficiency, resulting in a decrease in fluores-
cence yield that may not necessarily be accompanied by a
decrease in photochemical efficiency (Olaizola and Yama-
moto, 1994). Experimental analysis of fluorescence quench-
ing based on a model involving three separate quenching
mechanisms, two based in the reaction centre and one in
the antenna of PSII, clearly demonstrated that reaction cen-
tre quenching is important, if not predominant, in spinach
and Arabidopsis (Bukhov et al., 2001). Additionally, as dis-
tinct from higher plants, ΔpH-dependent qE was shown to
be independent of the xanthophyll cycle in Euglena gracilis
(Doege et al., 2000). Moreover, no evidence was found that
the qE was localised in the PSII antenna in Euglena gracilis
and reaction centre quenching of excess energy was sug-
gested to be the major mechanism involved (Tschiersch et
al., 2002). Similar ΔpH-dependent energy quenching occurring
in the reaction centre of PSII, but not in the antenna, was
proposed to be predominant in the red alga Rhodella viola-
cea (Delphin et al., 1996). The possible involvement of
enhanced charge recombination of QA- and P680+, favouring
nonradiative reaction centre dissipation of excess light, was
suggested recently from an in vivo global analysis of PSII life-
time distributions in photoinhibited Capsicum annuum L.
leaves (Matsubara and Chow, 2004). In addition, a zeaxan-
thin-independent non-photochemical quenching identified as
a form of high-energy state quenching mechanism localized
in the PSII core complex was shown in low light illuminated
barley plants (Finazzi et al., 2004). This reaction centre
quenching was suggested to be a common transient charac-
teristic during illumination depending on the balance
between light and carbon fixation fluxes (Finazzi et al., 2004).

Our recent data also implicate reaction centre quenching
as an alternative mechanism for nonradiative dissipation of
excess light energy (Ivanov et al., 2003). From this work it is
evident that exposure to low temperature results in major
alterations in the redox properties of the acceptor side of
PSII in photosynthetic organisms as diverse as the cyanobac-
terium Synechococcus sp. PCC 7942 (Sane et al., 2002), the
conifer Pinus sylvestris (Ivanov et al., 2001, 2002), the
model plant species Arabidopsis thaliana (Sane et al., 2003)
and barley (Ivanov et al., 2006). The shifts in the characteris-
tic TM of S2QA

− and S2QB
− recombinations in cold-accli-

mated Arabidopsis and barley plants with the QA

− and QB
−

associated peaks appearing at higher and lower tempera-
tures respectively (Sane et al. 2003; Ivanov et al., 2006),
imply substantial changes in the activation energies associ-
ated with de-trapping of the electron from reduced QA and
QB (Fig. 2). Similar changes in the redox properties of PSII
associated with a downshift in the TM of the B-band (S2QB

−)
have been reported in cold acclimated spinach (Briantais et
al., 1992) and more recently in low temperature grown
maize (Janda et al., 2000). Because the activation energies
have been shown to be directly related to the redox poten-
tials of the participating species (Devault and Govindjee,
1990), narrowing the temperature gap between the charac-
teristic TM for QA and QB reflects a narrowing of the redox
potential gap between QA and QB as a result of cold accli-

mation (Fig. 2). Furthermore, the high temperature shift in
the TM of S2QA

− corresponding to increased activation
energy of QA/QA

− (Sane et al., 2003; Ivanov et al., 2006)
would increase the free energy gap between QA

− and
P680+. This could cause stabilization of S2QA

− and decrease
the probability for the back reaction through P680+Pheo−

(Minagawa et al., 1999; Vavilin and Vermaas, 2000). More-
over, the preferential localization of the electron on QA in
cold acclimated Arabidopsis could also result from a change
in the redox potential of QB. Lowering the redox potential of
QB will narrow the gap between the redox potentials
between QA and QB even further and will decrease the prob-
ability for electron transfer between the two quinone accep-
tors by shifting the redox equilibrium between QA

−

 QB and
QAQB

− towards QA
−QB (Minagawa et al., 1999). The retention

of electrons preferentially on QA through a modification of
the redox potentials of QA and QB in opposite directions
would inhibit the reoxidation of QA

− by either forward or
back electron flow (Mäenpää et al., 1995). This would ensure
that the QB site remains occupied by a quinone, which would
protect PSII from photoinhibition and D1 degradation (Ohad
and Hirschberg, 1992). More detailed studies of DCMU
effects on the redox properties of PSII acceptor side have
demonstrated that DCMU binding increases the free energy
gap between P680+Pheo− and P680+QA

− by raising the
redox potential of QA (Krieger-Liszkay and Rutherford, 1998;
Fufezan et al., 2002). It was suggested that this would favour a
direct non-radiative charge recombination pathway without
the formation of singlet oxygen (Krieger-Liszkay and Ruther-
ford, 1998; Fufezan et al., 2002). Supporting evidence for this
argument comes from experiments in which the addition of
DCMU had a protective effect on D1 turnover under photo-
inhibitory conditions (Komenda and Masojidek, 1998). When
the QB site is occupied in the presence of DCMU and QA is
in a reduced state, PSII shows increased resistance to photo-
inhibition.

In this regard, it is important to note that acclimation to
low temperatures is strongly correlated with an increased
proportion of reduced QA at the given growth temperature
(Huner et al., 1993; Huner et al., 1998). Hence, it seems
very likely that the increased population of QA

− due to the
altered redox potentials of QA and QB during the shift and
acclimation to low temperature may enhance the dissipa-
tion of excess light within the reaction centre of PSII via
non-radiative P680+QA

− recombination, protecting the QA

site from excessive excitation pressure (Huner et al., 1998;
Öquist and Huner, 2003). However, upon extension of our
results on low temperature acclimation in cyanobacteria,
Arabidopsis and pine, our recent results on the energy parti-
tioning in barley indicated that the probability for non-radia-
tive dissipation of excess energy (reaction centre quenching)
increases not only in cold acclimated plants, but also in
plants acclimated to high growth irradiance. Since either
low temperature or high light induced a comparable reduc-
tion state of QA, this implies that reaction centre quenching
is correlated with the excitation pressure (Ivanov et al.,
2006). Thus, it would now appear that any environmental
condition which increases the reduction state of QA will
enhance the probablility of photoprotection through reac-
tion centre quenching.
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MOLECULAR MECHANISMS REGULATING 
REACTION CENTRE QUENCHING

Protein Modifications

Considering that conditions favouring nonradiative path-
way of energy dissipation in PSII reaction centres could be
induced by changes in the redox properties of both the
donor and acceptor sites of PSII, it is clear that certain struc-
tural modifications to the molecular organization and/or
local electrostatic environment of the water splitting com-
plex and the binding sites of QA and QB electron acceptors
could be involved. It has been well documented that donor
side dependent shifts in the redox properties of QA could be
induced by modification in structural and/or functional
integrity of the donor side during photoactivation of the Mn
cluster in PSII (Johnson et al., 1995) and by Ca-depletion of
the oxygen evolving complex (Krieger and Rutherford,
1997; Krieger et al., 1995). Furthermore, a single change in
a crucial amino acid residue on the donor side of D1 (Mina-
gawa et al., 1999; Ohad and Hirschberg, 1992) or a dele-
tion of the PEST-like sequence of D1 (Nixon et al., 1995)
has been shown to result in shifts of the S2QB

− TL peak
towards lower temperatures. In addition, over-reduction of
the S-states in vitro might also influence the S2QA

− recombi-
nation (Messinger et al., 1997; Schmid et al., 1994). Inter-
estingly, in addition to these earlier in vitro reports,
formation of super-reduced states (S

−1 and S
−2) was recently

reported to occur in vivo (Quigg et al., 2003). The genera-
tion and accumulation of the over-reduced state (S

−1) and
super-reduced state (S

−2) due to backward transition of the
S-states (Messinger et al., 1997; Quigg et al., 2003) would
increase the population of PSII reaction centres retaining
reduced QA, which is believed to be prerequisite for the
induction of nonradiative reaction centre quenching (Bukhov
et al., 2001).

In higher plants, the D1 polypeptide of PSII is subject to at
least five post-translational modifications: C-terminal processing
in the conversion of 34 kDa precursor polypeptide to the 32
kDa mature polypeptide; removal of the initiating methio-
nine residue; N-acetylation of the N-terminal threonine resi-
due; covalent palmitoylation mapped to the N-terminal two
thirds of the polypeptide and, finally, reversible phosphor-
ylation of the N-terminal threonine catalyzed by a light-
dependent, redox-regulated kinase (Mattoo et al., 1993;
Rintamärki and Aro, 2001). Although the functional role of
D1 palmitoylation remains unknown, palmitoylation has
been shown to regulate signal transduction through G-pro-
tein linked receptors by regulating protein-protein interac-
tions (Milligan et al., 1995). There is no evidence for the role
of D1 palmitoylation in altering the TM for S2/S3 – QA

−/QB
−

recombinations. However, alterations in protein-protein
interactions within PSII may be important since Arabidopsis
thaliana npq4 mutants lacking only the PsbS protein exhibit
significant downshifts in the TM for S2/S3 – QA

−/QB
− recombi-

nations under normal growth conditions (Huner et al.,
2006). Recent studies demonstrating that decreased oligo-
merization of LHCII proteins in Costata 2/133 pea mutant
correlates with increased probability for reaction center
quenching (Ivanov et al., 2005) and reaction center-type
energy quenching depends on PSII antenna size (Zulfugarov

et al., 2007) also support the importance of protein-protein
interactions within PSII complex in modulating the redox
properties of PSII acceptor side.

During the PSII damage-repair cycle in higher plants, both
the D1 and D2 reaction centre polypeptides undergo
reversible phosphorylation. The extent of D1 phosphoryla-
tion appears to be regulated by excitation pressure (Rin-
tamärki and Aro, 2001) as well as by an endogenous
circadian rhythm (Booij-James et al., 2002). Site-directed
mutagenesis of PsbA in Synechocystis PCC 6803 indicates
that alterations in a single amino acid can result in significant
changes in the TM for S2/S3 – QA

−/QB
− recombinations (Mina-

gawa et al., 1999; Vavilin and Vermaas, 2000). Thus, it is
conceivable that post-translational modification of D1 and/
or D2 PSII reaction centre polypeptides by either palmitoy-
lation or phosphorylation may alter the local conformation
and/or the electrostatic environment of the QA and QB bind-
ing sites localised on these polypeptides. This, in turn, may
result in shifts in the TM for S2/S3 – QA

−/QB
− recombinations

and hence the changes in the redox potentials of QA and
QB. Unlike seed plants, no phosphorylation of the D1
polypeptide has been detected in Chlamydomonas rein-
hardtii (Rintamärki and Aro, 2001) but the decrease in
HCO3

− concentrations in the chloroplast under saturating
irradiance has also been shown to affect the redox poten-
tials of QA and QB (Demeter et al., 1995; Govindjee, 1993).
Thus, limitation of chloroplastic HCO3

− concentrations may
also contribute to modulating the redox potentials of QA

and QB through its regulatory role in the electron flow from
QA to QB, acting as a fifth ligand to the nonheme Fe in PSII
(Hienerwadel and Berthomieu, 1995). In the recent struc-
tural model of the PSII reaction centre, the bicarbonate
anion is positioned close to D1Tyr246 and D2Lys264, which
could stabilize it by hydrogen bonding (Ferreira et al., 2004).

Lipid Environment

While environmental modulation of D1 protein exchange
(Sane et al., 2002) and various post-translation modifications
of PSII polypeptides mentioned above may well be respon-
sible for alteration of the redox properties of the acceptor
site of PSII, changes in the lipid environment surrounding
D1/D2 protein complex may also affect the redox character-
istics of the electron accepting quinones QA and QB. Growth
temperature and growth irradiance have a significant impact
on the lipid and fatty acid composition of thylakoid mem-
branes of cyanobacteria and higher plants (Harwood, 1998;
Los and Murata, 2002; Nishida and Murata, 1996). The
contribution of specific lipid classes and the unsaturation of
membrane lipids to enhance the tolerance of the photosyn-
thetic machinery of cyanobacteria and higher plants towards
chilling and high light stress have been well established and
reviewed (Nishida and Murata, 1996).

Crystallographic X-ray diffraction analysis (at 2.55 Å reso-
lution revealed close interactions between three lipid mole-
cules (cardiolipin, phosphatidylcholine, glucosylgalactosyl
diacylglycerol) and the reaction centre of Rhodobacter
sphaeroides (Camara-Artigas et al., 2002). The lipid mole-
cules were localized on the surface of the protein at three
distinct sites: the glycolipid chains make contact with the
isoprenoid chain of QA; the phosphatidylcholine binds at
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the interface between L and M subunit and comes in con-
tact with the isoprenoid chain of QB which lies 9.5 Å apart
from the lipid; the polar group of the cardiolipin is over 15
Å from any of the electron accepting quinones. Based on
the structural model, it has been suggested that specific
lipid-protein interactions may affect the functioning of the
electron accepting quinones within the reaction centre
(Camara-Artigas et al., 2002). In support of this, an earlier
study of the charge recombination process in PSII demon-
strated that lipid rigidity modulates P680+QA

− recombina-
tion in Rhodopseudomonas viridis and Rhodobacter sphaeroides
(Sebban et al., 1991). In addition, a very recent study dem-
onstrated that the redox midpoint potential (Em) of QA in
bacterial reaction centres was significantly lowered by the
native lipid cardiolipin (Rinyu et al., 2004). This effect was
discussed in terms of a specific lipid induced modification of
the structure of the QA binding site (Rinyu et al., 2004). In
addition, lipid phase transitions also affect the second elec-
tron transfer reaction in bacterial reaction centres by modi-
fying the free energy gap between QA and QB, most
probably via an electrostatic effect due to the segregation of
the reaction centre proteins (Taly et al., 2002).

Precise information of the specific lipid binding sites
within the PSII reaction centre complex of higher plants are
still not available, but it is well known that chloroplast lipids
play a key role in the assembly and functioning of PSII
(Nishida and Murata, 1996; Pali et al., 2003). For example,
the phospholipid phosphatidylglycerol (PG) has been sug-
gested to be a functional effector and membrane anchor of
the D1 protein in the PSII core complex (Kruse and Schmid,
1995). It has been also shown that PG is directly involved in
the dimerization of the D1/D2 heterodimer of PSII (Kruse et
al., 2000) and in the function of the secondary electron
acceptor, QB, in the PSII reaction centres (Gombos et al.,
2002). In a recent study Sakurai et al. (2003) demonstrated
that the absence of PG increased the susceptibility of Syn-
echocystis sp. PCC6803 mutant (pgsA) cells to photoinhibi-
tion due to impaired dimerization of PSII core monomers
and the reactivation of photoinhibited PSII core complexes.
Furthermore, Dobrikova et al. (1997) showed that the asym-
metric surface charge distribution and electric polarizability
of thylakoid membranes are significantly altered in the fadB
and the fadC mutants of Arabidopsis that are deficient in
lipid fatty acid desaturases. In addition, the dgd1 mutant of
Arabidopsis, deficient in digalactosyldiacylglycerol (DGDG),
exhibits modified properties for the oxygen evolving com-
plex, providing direct evidence that specific lipids may play
an important role for the functional and/or structural integ-
rity of the water oxidizing complex (Reifarth et al., 1997).
Thus, it is conceivable that light- and temperature-induced
changes in the thylakoid lipid and fatty acid composition
could also alter the microenvironment of PSII reaction cen-
tres by altering lipid-protein interactions causing a shift in
the TM for the QA and QB recombinations.

SUMMARY

We conclude that, as originally suggested by Krause and
Weis (1991), both reaction centre and antenna quenching

function in vivo to different extents to protect PSII from pho-
todamage depending on the species as well as the environ-
mental conditions. Reaction centre quenching may replace
antenna based non-photochemical quenching and enhance
the protection of PSII against photoinhibition induced either
by high light or low temperature in organisms such as cyanobac-
teria which lack xanthophyll-cycle-dependent antenna quench-
ing and complement the capacity for antenna quenching
under conditions where the enzyme-dependent xantho-
phyll cycle is thermodynamically restricted (Öquist and
Huner, 2003). Any condition which increases the reduction
state of QA, enhances the probability of reaction centre
quenching. However, further research is required not only
to assess the contribution of any one of these mechanisms
to the shifts in the TM for S2/S3 – QA

−/QB
− recombinations

and hence reaction centre quenching but also to assess the
timing for the onset of reaction centre quenching versus
antenna quenching associated with NPQ during exposure to
increased excitation pressure.
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